VOLTAGE-GATED Ca\(^{2+}\) INFLUX AND MITOCHONDRIAL Ca\(^{2+}\) INITIATE SECRETION FROM APLYSIA NEUROENDOCRINE CELLS

C. M. HICKEY, C. J. GROTEN, L. SHAM, C. J. CARTER AND N. S. MAGOSKI*‡

Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, ON K7L 3N6, Canada

Abstract—Neuroendocrine secretion often requires prolonged voltage-gated Ca\(^{2+}\) entry; however, the ability of Ca\(^{2+}\) from intracellular stores, such as endoplasmic reticulum or mitochondria, to elicit secretion is less clear. We examined this using the bag cell neurons, which trigger ovulation in *Aplysia* by releasing egg-laying hormone (ELH) peptide. Secretion from cultured bag cell neurons was observed as an increase in plasma membrane capacitance following Ca\(^{2+}\) influx evoked by a 5-Hz, 1-min train of depolarizing steps under voltage-clamp. The response was similar for step durations of \(\geq 50\) ms, but fell off sharply with shorter stimuli. The capacitance change was attenuated by replacing external Ca\(^{2+}\) with Ba\(^{2+}\), blocking Ca\(^{2+}\)-dependent peptide secretion from bag cell neurons, either from influx or stores, and may reflect the all-or-none nature of reproduction.

© 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

Key words: capacitance, calcium channel, FCCP, CPA, bag cell neurons, peptide release.

INTRODUCTION

Like classical neurotransmission, peptide and neuroendocrine secretion depends on Ca\(^{2+}\) influx (Neher, 1998). There is often a delay between voltage-gated Ca\(^{2+}\) entry and peptide release, suggesting a Ca\(^{2+}\) threshold for secretion (Thomas et al., 1993; Hsu and Jackson, 1996; Branchaw et al., 1998; Sedo et al., 2004). Prolonged periods of action potentials or membrane depolarization are typically more effective than short stimuli at triggering neuropeptide secretion, presumably because this elevates Ca\(^{2+}\) over the threshold (Dreifuss et al., 1971; Bicknell and Leng, 1981; Hartzell, 1981; Gainer et al., 1986; Lim et al., 1990; Sedo et al., 2004). In addition, Ca\(^{2+}\) from stores can bring intracellular Ca\(^{2+}\) closer to the threshold and directly or indirectly influence peptide release (Ammalà et al., 1993; Tse et al., 1997; Shakiryanova et al., 2007; Gilbert et al., 2008). Overall, a threshold may limit hormonally-induced behaviors, particularly high-priority fixed-action patterns that proceed to completion once initiated (Kupfermann and Weiss, 1978).

The bag cell neurons of the marine mollusk, *Aplysia californica*, are neuroendocrine cells that control reproduction through a long-term change in excitability known as the afterdischarge (Kupfermann, 1967; Conn and Kaczmarek, 1989). This burst results from cholinergic and peptidergic inputs, and consists of a fast phase (5-Hz firing for approximately 1 min) and a slow phase (1-Hz firing sustained over 30 min) (Kaczmarek et al., 1982; Brown et al., 1989; White and Magoski, 2012). In vivo, this leads to the neurohaemal release of several peptides, including egg-laying hormone (ELH), which acts on central and peripheral targets to evoke egg-laying behavior (Dudek and Tobe, 1978; Chiu et al., 1979; Stuart et al., 1980). Biochemical techniques have revealed Ca\(^{2+}\)-dependent peptide secretion from bag neurons isolated from animals engaged in egg-laying presented a greater train-induced capacitance elevation vs quiescent animals. The bag cell neuron capacitance increase is consistent with peptide secretion requiring high Ca\(^{2+}\), either from influx or stores, and may reflect the all-or-none nature of reproduction.
cell neurons in the intact nervous system following an afterdischarge or high extracellular K\(^{+}\)-mediated depolarization (Arch, 1972; Loechner et al., 1990, 1992; Michel and Wayne, 2002; Hatcher and Sweedler, 2008). The peptides expressed by bag cell neurons are also preserved in vitro (Chiu and Stumwasser, 1981), and mass spectrometry has shown ELH release from cultured bag cell neurons subsequent to action potential firing (Hatcher et al., 2005; Jo et al., 2007).

The afterdischarge, neuropeptide secretion, and egg-laying behavior are effectively all-or-none events (Kupfermann, 1967; Ferguson et al., 1989). Yet the relationship between afterdischarge duration and the volume of eggs deposited is less than linear, i.e., even bursts that are shorter than 30 min result in eggs (Dudek et al., 1979). This likely involves the release of Ca\(^{2+}\) from intracellular stores promoting ELH secretion subsequent to the afterdischarge (Michel and Wayne, 2002). These circumstances, in combination with the fact that most work on secretion has used the intact cluster, have made it difficult to resolve what duration or pattern of activity is sufficient to cause secretion. Thus, the aim of the present study was to use voltage-clamp and capacitance tracking to characterize how Ca\(^{2+}\) entry or release elicits secretion in real time from individual cultured bag cell neurons. Our findings show that only prominent Ca\(^{2+}\) elevation, either due to voltage-gated influx or liberation from the mitochondria, initiates secretion. Such conditions fit with a behavior that is fundamental to survival, and may reflect a general principal for the neuroendocrine control of high-threshold actions.

EXPERIMENTAL PROCEDURES

Animals and cell culture

Primary cultures of isolated bag cell neurons were obtained from adult 150–500 g A. californica (a hermaphrodite) purchased from Marinus (Long Beach, CA, USA) or Santa Barbara Marine Biologicals (Santa Barbara, CA, USA) and housed in an approximate 300-l aquarium containing continuously circulating, aerated artificial seawater (Instant Ocean; Aquarium Systems; Mentor, OH, USA) at 14–16 °C on 12/12-h light/dark cycle and fed Romaine lettuce 5 days every 2 weeks. Animals were maintained in an approximate 300-l aquarium containing continuously circulating, aerated artificial seawater (Instant Ocean; Aquarium Systems; Mentor, OH, USA) at 14–16 °C on 12/12-h light/dark cycle and fed Romaine lettuce 5 days every 2 weeks. Animals were maintained in an approximate 300-l aquarium containing continuously circulating, aerated artificial seawater (Instant Ocean; Aquarium Systems; Mentor, OH, USA) at 14–16 °C on 12/12-h light/dark cycle and fed Romaine lettuce 5 days every 2 weeks.

The afterdischarge, neuropeptide secretion, and egg-laying behavior are effectively all-or-none events (Kupfermann, 1967; Ferguson et al., 1989). Yet the relationship between afterdischarge duration and the volume of eggs deposited is less than linear, i.e., even bursts that are shorter than 30 min result in eggs (Dudek et al., 1979). This likely involves the release of Ca\(^{2+}\) from intracellular stores promoting ELH secretion subsequent to the afterdischarge (Michel and Wayne, 2002). These circumstances, in combination with the fact that most work on secretion has used the intact cluster, have made it difficult to resolve what duration or pattern of activity is sufficient to cause secretion. Thus, the aim of the present study was to use voltage-clamp and capacitance tracking to characterize how Ca\(^{2+}\) entry or release elicits secretion in real time from individual cultured bag cell neurons. Our findings show that only prominent Ca\(^{2+}\) elevation, either due to voltage-gated influx or liberation from the mitochondria, initiates secretion. Such conditions fit with a behavior that is fundamental to survival, and may reflect a general principal for the neuroendocrine control of high-threshold actions.

Whole-cell voltage-clamp recording

Voltage-clamp recordings were made using an EPC-8 amplifier (HEKA Electronics; Mahone Bay, NS, Canada) and the tight-seal, whole-cell method. Microelectrodes were pulled from 1.5 mm external diameter/1.12 internal diameter, borosilicate glass capillaries (TW150F-4; World Precision Instruments, Sarasota, FL, USA) and had a resistance of 1–3 MΩ when filled with various intracellular salines (see below). Pipette junction potentials were nulled immediately before seal formation, while pipette capacitive currents were canceled immediately after break through. To facilitate membrane capacitance tracking (see below), series resistance and whole-cell capacitance were usually not compensated. However, Ca\(^{2+}\) currents were occasionally measured separate from capacitance, and in those cases the series resistance (2–5 MΩ) was compensated to 70–80% and monitored throughout the experiment, while the neuronal capacitance was canceled by the whole-cell capacitance compensation. Current was filtered at 1 kHz by the EPC-8 built-in Bessel filter and sampled at 2 kHz using an IBM-compatible personal computer, a Digidata 1300 analog-to-digital converter (Axon Instruments/Molecular Devices; Sunnyvale, CA, USA) and the Clampex acquisition program of pCLAMP 8.1 (Axon Instruments). Clampex was also used to set the holding and command potentials.

In most cases, neurons were held at −80 mV and stimulated with a 5-Hz, 1-min train of square voltage pulses to 0 mV to produce Ca\(^{2+}\) influx and secretion (see Results for details). Subtraction of leak from the train-induced Ca\(^{2+}\) currents was achieved by subsequently blocking Ca\(^{2+}\) channels with 10 mM Ni\(^{2+}\), delivering the train a second time, then subtracting the current in Ni\(^{2+}\) from the control current (as per Hung and Magoski, 2007; Tam et al., 2009). In some experiments, neurons were held at −60 mV and Ca\(^{2+}\) currents evoked with 200-ms square pulses from −60 mV to +40 mV in 10-mV increments. Leak subtraction from these currents was performed on-line using a P/4 protocol from −60 mV with subpulses of opposite polarity and one-fourth the magnitude, an inter-subpulse interval of 500 ms, and 100 ms before actual test pulses.
Most recordings were performed in \(\text{Ca}^{2+} \cdot \text{Cs}^{+} \cdot \text{TEA} \) ASW, where NaCl and KCl were replaced by TEA-Cl and CsCl, respectively (composition in mM: 460 TEA-Cl, 10.4 CsCl, 55 MgCl\(_2\), 11 CaCl\(_2\), 15 HEPES, pH 7.8 with CsOH). This was paired with a Cs\(^+\)-aspartate-based intracellular saline (composition in mM: 70 CsCl, 10 HEPES, 11 glucose, 10 glutathione, 5 ethyleneglycol bis(aminohexylether) tetracetic acid (EGTA), 500 aspartic acid, 5 ATP (grade 2, disodium salt; A3377, Sigma–Aldrich), and 0.1 GTP (type 3, disodium salt; G8877, Sigma–Aldrich), pH 7.3 with CsOH). On occasion, the Cs\(^+\)-based intracellular saline contained 20 mM EGTA, 5 mM MgCl\(_2\), and a free Ca\(^{2+}\) concentration of 35 nM. In experiments replacing extracellular \(\text{Ca}^{2+}\) with Ba\(^{2+}\), a Ba\(^{2+}\)–Cs\(^+\)–TEA ASW (as per \(\text{Ca}^{2+}\)–Cs\(^+\)–TEA–Ba\(^{2+}\)–TEA ASW, but with 460 mM TEA-Br instead of TEA-Cl and 11 mM BaCl\(_2\) instead of CaCl\(_2\)) was used. The Cs\(^+\)-based intracellular saline had a junction potential of 20 mV vs \(\text{Ca}^{2+}\)-free ASW or Ba\(^{2+}\)-free ASW, which was compensated for offline. Some cases employed normal ASW (nASW; composition as per tCAW, but with glucose and antibiotics omitted) or Ca\(^{2+}\)-free ASW (cfASW; composition as per nASW but with the CaCl\(_2\) omitted and 0.5 mM added EGTA) and microelectrodes filled with K\(^+\)-aspartate-based intracellular saline \(\text{Ca}^{2+}\) (composition in mM: 500 K-aspartate, 70 KCl, 1.25 MgCl\(_2\), 10 HEPES, 11 glucose, 10 glutathione, 5 EGTA, 5 ATP, and 0.1 GTP; pH 7.3 with KOH; free \(\text{Ca}^{2+}\) concentration set to 300 nM). This intracellular saline had a junction potential of 15 mV vs nASW or cfASW, which was again compensated off-line.

Capacitance tracking

As an indicator of secretion, membrane capacitance was tracked on-line under whole-cell voltage-clamp using the time-domain method in Clampex (Gillis, 1995). From a holding potential of \(-80\) mV, pulses of 100-ms duration and 20-mV amplitude were delivered at 0.5–2 Hz. The voltage step evoked typical, voltage-independent current responses, consisting of a fast transient component (reflecting capacitive current) followed by a steady-state component (reflecting membrane current). The change in current (\(\Delta I \)) to the 20-mV step (\(\Delta V \)) was calculated as the difference between the steady-state current (\(I_{ss} \)) near the end of the step and the baseline current (\(I_b \)) prior to the step: \(\Delta I = I_{ss} - I_b \). The membrane time constant (\(\tau \)) was derived by fitting a single-exponential to the transient current. The charge during the transient current (\(Q_{trans} \)) was determined by integrating the area above \(I_{ss} \) for the period of the transient current. A correction factor (\(Q_{corr} \)), to account for the settling time during the step, was calculated as: \(Q_{corr} = \Delta I \times \tau \). The total charge (\(Q \)) was then determined by: \(Q = Q_{corr} + Q_{trans} \). The total resistance (\(R_t \)) was calculated as: \(R_t = \Delta V/\Delta I \), while access resistance (\(R_a \)) was derived from: \(R_a = \tau \times \Delta V/Q \). These were used to calculate membrane resistance (\(R_m \) as: \(R_m = R_t - R_a \)). Finally, membrane capacitance (\(C_m \)) was determined from: \(C_m = Q / R_t \Delta V \times R_m \). To increase the accuracy and improve the signal-to-noise ratio, current traces were cumulatively averaged (5–10 pulses per average) before each calculation. The \(-80\) mV holding potential was chosen to avoid the activation of any voltage-gated \(\text{Ca}^{2+}\) channels during the 20-mV step (Tam et al., 2009).

Double-stranded RNA inhibition

To examine the impact of a reduction in ELH content on secretion, ELH protein expression was lowered with long double-stranded ribonucleic acid (dsRNA) inhibition (Fire et al., 1998; Bhargava et al., 2004). Cultured bag cell neurons were prepared as per Experimental Procedures, Animals and cell culture, with the exception that neurons were plated onto glass coverslips (#1; 48366045; VWR, West Chester, PA, USA) coated with 20 \(\mu \)g/ml poly-L-lysine hydrobromide, MW = 300,000 (P1524-25MG; Sigma–Aldrich) and glued with Sylgard 184 silicone elastomer (SYLG184; World Precision Instruments) to holes drilled out of the bottom of the tissue culture dish.

Abdominal ganglia were dissected from \textit{Aplysia} and the bag cell neuron clusters removed. Clusters were snap-frozen in liquid \(N_2 \) and then homogenized in lysis solution from a Norgen Total RNA isolation kit (17200; Norgen Biotek Corp., Thorold, ON, Canada) using a PowerGen 35 handheld homogenizer (Fisher Scientific). Total RNA was isolated and purified using the Norgen RNA isolation kit (12400; MO Bio Laboratories Inc., Santa Ana, CA, USA) and treated with DNAseI and RNase (both QC, Canada). cDNA was synthesized by reverse transcription using a mixture of poly-A and random hexamer primers and an iScript cDNA synthesis kit (170-8890; Bio-Rad Laboratories, Mississauga, ON, Canada). A 462-bp cDNA fragment encoding \textit{Aplysia} ELH (from accession# NM_001204744.1) was PCR-amplified using an iTaq DNA polymerase kit (170-8870; Bio-Rad Laboratories) and gene-specific primers (forward, 5’-CCACAAAAAGGAGACTCCGATTCGACA-3’; reverse, 5’-GAGGTGAGCCGACCTGACGCCAAGA3’-3”) extended on the 5’ ends with a T7 RNA promoter sequence (TAATACGACTCACTATAGGG). As a negative control, a 450-bp dsRNA was prepared directed against the 5’ untranslated region of the newt (Notophthalmus viridescens) retinoic acid receptor (accession# AY847515) using primers (forward, 5’-AGCATGGACCGATCCTAGGAGGAC-3’; reverse, 5’-GGGAGGATTCCGACTGAGGA-3”). The pcDNA3.1 vector (Invitrogen) was linearized with NotI, and the sense into the open reading frame of pcDNA3.1 (Invitrogen) was transcribed using T7 RNA polymerase (Promega) and polyadenylated. The transcript was then ligated into the pcDNA3.1 vector, resulting in a plasmid containing the ELH construct. This plasmid was then transfected into \textit{Aplysia} neurons using a BioRad GeneJet Gun according to the manufacturer’s instructions. Following transfection, \textit{Aplysia} neurons were allowed to recover for 24 h before experimentation.
from the MEGAscript kit) for 1 h at 37 °C and column purified according to the MEGAscript kit protocol. Bag cell neurons were first cultured in the absence of dsRNA overnight at 14 °C and then bath incubated at 14 °C in the presence of 300 ng/ml dsRNA for an additional 3 d. This method of long dsRNA inhibition has proven successful in both Aplysia sensory neurons (Lee et al., 2009) and motor neurons from the related mollusk, Lymnaea (Van Kesteren et al., 2006).

Immunocytochemistry

To confirm knock-down, dsRNA-treated neurons were immunostained for ELH at room temperature. The dish was drained of all fluid except for the contents of the glass-bottom well (see Experimental procedures, Double-stranded RNA inhibition) and new solutions delivered by Pasteur pipette directly onto the cells. Neurons were fixed for 25 min with 4% (w/v) paraformaldehyde (04042; Fisher) in 400 mM sucrose/Na2ASW (pH 7.5 with NaOH). They were then permeabilized for 5 min with 0.3% (w/v) Triton X-100 (BP151; Fisher) in fix and washed twice with phosphate-buffered saline (PBS; composition in mM: 137 NaCl, 2.7 KCl, 4.3 NaH2PO4, 1.5 KH2PO4; pH 7.0 with NaOH).

Neurons were blocked for 60 min in a blocking solution of 5% (v/v) goat serum (G9023; Sigma–Aldrich) in PBS. The primary antibody, rabbit anti-ELH immunogammaglobulin (IgG) (kindly provided by Dr. NL Wayne, University of California Los Angeles), was applied at 1:1000 in blocking solution. Neurons were incubated in the dark for 1 h and subsequently washed 4× with PBS. The secondary antibody, goat anti-rabbit IgG conjugated to Alexa Fluor 488 (A-11008; Invitrogen) was applied at 1:200 in blocking solution and incubated in the dark for 2 h. Neurons were then washed 4× with PBS, the wells filled with mounting solution (26% w/v glycerol (BP2291; Fisher), 11% w/v Mowiol 4-88 (17951; Polysciences, Warrington, PA, USA), and 110 mM TRIS (pH 8.5)) and covered with a glass coverslip.

Fluorescence microscopy

Stained neurons were imaged using a Nikon TS100-F inverted microscope (Nikon, Mississauga, ON, Canada) equipped with Nikon Plan Fluor 20× (numerical aperture 0.50) or 100× objective (numerical aperture 1.30). Neurons were excited with a 50-W Mercury lamp and a 480/15-nm band pass filter. Fluorescence was emitted to the eyepiece or camera through a 505-nm dichroic mirror and 520-nm barrier filter. Images (1392 × 1040 pixels) were acquired at the mid-vertical somatic axis of the neuron via the whole-cell recording pipette.

Reagents and drug application

Carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP; 21857; Sigma–Aldrich), cyclopiazonic acid (CPA; C1530; Sigma–Aldrich or 239805; Calbiochem, San Diego, CA, USA), and bafilomycin A (B1793; Sigma–Aldrich) were made up as stocks in dimethyl sulfoxide (DMSO; BP231; Fisher). N-ethylmaleimide (NEM; E3876; Sigma–Aldrich) was dissolved as a stock in 100% ethanol. The maximal final concentration of either vehicle was ≤0.2%, which we have found to have no adverse effect on the membrane potential, macroscopic or single-channel currents, membrane capacitance, or intracellular Ca2+ of bag cell neurons (Magosi et al., 2000; Kachoei et al., 2006; Lupinsky and Magosi, 2006; Hung and Magosi, 2007; Gardam et al., 2008; Geiger and Magosi, 2008; Tam et al., 2009; Hickey et al., 2010). NiCl2 (N6136; Sigma–Aldrich) and guanosine-5′-[(γ-thio)tripophosphate (GTP-γ-S; tetralithium salt; G6834; Sigma–Aldrich) were prepared as stocks in water.

Solution exchanges were accomplished by manual perfusion using a calibrated transfer pipette to first exchange the bath (tissue culture dish) solution. To apply a drug, a small volume (1–10 μl) of stock solution was mixed with a larger volume of saline (approximately 100 μl) that was initially removed from the bath, and this mixture was then pipetted back into the bath. Care was taken to add drugs near the side of the dish and as far away as possible from the neurons. GTP-γ-S was diluted down in intracellular saline and dialyzed directly into the neuron via the whole-cell recording pipette.

Analysis

Clampfit, a program of pClamp, was used to quantify membrane capacitance. Typically, the analysis involved comparing the average value during a steady-state baseline of 30 s to 1 min, with either the peak response following a train of depolarizing stimuli (see Results for details) or the average peak value from a region that had reached steady-state for 5–30 s after the delivery of a drug (again see Results for details). Average values were determined by eye or by setting cursors on either side of the range of interest and calculating the mean score of those data points. Change was expressed as a percent change of the new capacitance over the baseline capacitance. The time course of the response was quantified by determining the percent recovery from the peak change in capacitance back down to baseline over a period of 5 or 10 min. In some instances, Ca2+ current during a train of step depolarizations was recorded. To estimate total Ca2+ influx, the area above each current trace was calculated in Clampfit between cursors set at the start and end of the trace, divided by whole-cell capacitance, and summed with the values derived from all other traces in a given neuron.

The staining intensity of fluorescence images was quantified as the average intensity, in arbitrary units, using ImageJ and a free-hand drawn circle region of interest over the soma to best fit the outline of the apparent edge of the membrane. Intensity was then normalized by dividing all values within a given cohort of neurons by the maximally fluorescing cell.

Summary data are presented as the mean ± standard error of the mean. Statistics were
performed using Instat (version 3.0; GraphPad Software, San Diego, CA, USA). The Kolmogorov–Smirnov method was used to test data sets for normality. If the data were normal, Student’s unpaired t-test (for normally distributed data) with the Welch correction as necessary (for unequal standard deviations) was used. A Mann–Whitney test was implemented if the data were not normal. To test for differences between multiple means, a standard one-way analysis of variance (ANOVA) was used, followed by Bonferroni’s multiple comparisons test. Means were considered significantly different if the p-value was < 0.05.

RESULTS

Ca\(^{2+}\) entry causes an increase in bag cell neuron membrane capacitance

It is well established that capacitance tracking can reflect secretion, based on vesicle fusion causing an increase in membrane surface area (Neher and Marty, 1982; Lim et al., 1990; Klyachko and Jackson, 2002). Furthermore, Geiger and Magoski (2008) reported that delivery of a stimulus which mimics the fast phase of the afterdischarge (a 5-Hz, 1-min burst of action potentials) evokes an immediate and prominent influx of Ca\(^{2+}\) through bag cell neuron voltage-gated Ca\(^{2+}\) channels. To investigate if Ca\(^{2+}\) influx could trigger secretion, the membrane capacitance of individual, cultured bag cell neurons was tracked under voltage-clamp while emulating the fast phase with a 5-Hz, 1-min train of 75-ms square voltage pulses from –80 mV to 0 mV. In solutions that isolate Ca\(^{2+}\) currents (Ca\(^{2+}\)-Cs\(^{+}\)-TEA ASW external and Cs\(^{+}\)-aspartate internal) (Fig. 1A, inset), the train caused a robust capacitance increase that decayed to baseline over 5–10 min (n = 8) (Fig. 1A, upper).

The vast majority of neurons used in the present study had sprouted neurites. However, because the presence of neurites and growth cones may be necessary for peptide release, we initially noted neuronal shape and size during recordings so to ascertain any potential correlation in secretory capability. The train-induced capacitance elevation was apparent in cultured bag cell neurons regardless of whether or not they had sprouted and were essentially spherical (n = 2), had extended one or more short neurites (less than one soma diameter) (n = 4), or had extended one or more long neurites (greater than one soma diameter) (n = 9). In addition, to certify that the protease used to prepare the neurons for isolation did not impact secretion, neurons were cultured without prior enzymatic treatment. Not surprisingly, isolation without protease resulted in a very low yield (n = 3 neurons from two animals); yet those cells, which also did not sprout, still presented a similar capacitance elevation (9.8 ± 2.1%; n = 3) compared to additional controls (9.7 ± 2.4%; n = 8) cultured using protease.

Ba\(^{2+}\) is commonly used as a substitute for Ca\(^{2+}\) because it readily passes through Ca\(^{2+}\) channels (Hagiwara et al., 1974; Hille, 2001); for example, both our laboratory and others have found that Ca\(^{2+}\) currents recorded in Ba\(^{2+}\) are as large, if not larger, than those measured using Ca\(^{2+}\) (Fieber, 1995; Knox et al., 1996; Tam et al., 2009). However, Ca\(^{2+}\) is often specifically required to initiate processes such as channel gating or secretion (Miledi, 1966; Shin et al., 2003; Lupinsky and Magoski, 2006). When extracellular Ca\(^{2+}\) was replaced with Ba\(^{2+}\) by using Ba\(^{2+}\)-Cs\(^{+}\)-TEA ASW rather than Ca\(^{2+}\)-Cs\(^{+}\)-TEA ASW, it abolished the rise in membrane capacitance produced by the train (n = 11) (Fig. 1A, lower). This reduction in the capacitance change was significant (Fig. 1B).

Compared to the secretion of classical transmitters, release from neuroendocrine cells is often slower to develop and requires greater Ca\(^{2+}\) entry, i.e., higher frequency or longer bouts of firing (Neher, 1998; Neher and Sakaba, 2008). To determine if there was an optimal level of stimulation for generating a membrane capacitance change, neurons were voltage-clamped at –80 mV and stepped to 0 mV with a 5-Hz, 1-min train of 10-, 25-, 37-, 50-, 75-, or 100-ms square voltage pulses. Only one train with a given pulse duration, chosen at random, was applied to an individual neuron. While essentially no response occurred at 10 or 25 ms, a small capacitance elevation was apparent with 37 ms, and this was even larger for 50 ms, but did not increase further at 75 or 100 ms (Fig. 1C). For consistency, and given that, on the whole, it represents the middle of the most effective range for evoking the response, a 75-ms pulse duration was chosen for all subsequent experiments involving the train.

To examine how Ca\(^{2+}\) influx related to the capacitance increase, Ca\(^{2+}\) currents were recorded from separate cultured bag cell neurons using the train and the full range of pulse durations (e.g., Fig. 1A, inset). Influx was calculated by summing the area above each current pulse and normalized to cell capacitance (see Experimental procedures, Whole-cell voltage-clamp recording for details). Ca\(^{2+}\) influx was evident even at a pulse duration of 10 ms (albeit small), and steadily increased as the pulses were lengthened, with a half-maximum near 37 ms and a plateau by 50 ms (Fig. 1D). Thus, when comparing Fig. 1C vs D, the capacitance change is not apparent until the Ca\(^{2+}\) influx has surpassed half of the upper limit.

A general Ca\(^{2+}\) channel blocker eliminates the increase in capacitance

To further test whether Ca\(^{2+}\) entry through voltage-gated Ca\(^{2+}\) channels is responsible for secretion, we applied the common Ca\(^{2+}\) channel blocker, Ni\(^{2+}\), before delivering the train (Byerly et al., 1985; McFarlane and Gilly, 1998). Specifically, cultured bag cell neurons bathed in Ca\(^{2+}\)-Cs\(^{+}\)-TEA ASW and dialyzed with Cs\(^{+}\)-based intracellular saline, were subjected to consecutive 5-Hz, 1-min trains separated by approximately 15 min (n = 10). The purpose of administering two trains was to first confirm that an individual neuron was capable of responding before attempting to block Ca\(^{2+}\) influx. Both trains elicited a rise in membrane capacitance, although the second increase was always smaller than the first by essentially 50% (Fig. 2A). When 10 mM Ni\(^{2+}\) was...
delivered prior to the second train, it completely eliminated the subsequent change in capacitance (Fig. 2B), which reached significance in the group data \((n = 5)\) (Fig. 2C). Previous work in our laboratory has shown 10 mM Ni\(^{2+}\) to be saturating for Ca\(^{2+}\) channel block in bag cell neurons (Hung and Magoski, 2007). We also tested if the train-induced capacitance increase was maintained under the more physiological conditions of a simple culture medium in the bath and K\(^{+}\)-based intracellular saline in the pipette. In this case, the response was still present and significantly reduced by Ni\(^{2+}\) (Fig. 2D). In both conditions, we did observe some cases where stimulation in Ni\(^{2+}\) lead to subsequent decreases in capacitance, which could be due to voltage-dependent activation of endocytosis – as seen in dorsal root ganglion neurons (Zhang et al., 2004).

Buffering intracellular Ca\(^{2+}\) attenuates the increase in membrane capacitance

There appears to be a strong link between Ca\(^{2+}\) entry and the capacitance response. To determine whether the train-induced increase in capacitance required an elevation of intracellular Ca\(^{2+}\), cultured bag cell neurons were bathed in Ca\(^{2+}\)-Cs\(^{+}\)-TEA ASW and dialysed for 10 min with Cs\(^{+}\)-based intracellular solution containing either our standard (5 mM) or a high (20 mM) concentration of the slow Ca\(^{2+}\) buffer, EGTA (Smith et al., 1984; Naraghi, 1997). When intracellular Ca\(^{2+}\)
was buffered with high-EGTA (n = 10), the rise in membrane capacitance caused by the 5-Hz, 1-min train was attenuated by nearly half compared to the response evoked under the lower concentration of EGTA (n = 9) (Fig. 3A). This effect achieved significance (Fig. 3B) and suggests the change in membrane capacitance is dependent on elevated intracellular Ca$^{2+}$.

An alkylating agent inhibits the increase in membrane capacitance

Blocking one of the steps leading to vesicle-plasma membrane fusion should reduce the capacitance increase evoked by the train. N-ethylmaleimide (NEM) is an alkylating agent that disrupts protein sulfhydryl groups and can block vesicle fusion (Block et al., 1988; Han et al., 1999; Wickner and Schekman, 2008). We treated cultured bag cell neurons for 30 min with either ethanol (the vehicle) or 100 μM NEM, and subsequently delivered a 5-Hz, 1-min train under whole-cell voltage-clamp in Ca$^{2+}$-Cs$^{+}$-TEA ASW using with Cs$^{+}$-based intracellular saline. Following NEM exposure (n = 5), the train produced an increase in capacitance that was diminished by two-thirds compared with ethanol-treated neurons (n = 5) (Fig. 4A). The mean data showed this reduction met the level of significance (Fig. 4B). This aside, NEM could modify other sulfhydryl-containing proteins; in fact, NEM may indirectly modulate Ca$^{2+}$ currents in some neurons, via alkylation of cysteine residues on G-protein subunits (Fryer, 1992; Shapiro et al., 1994). To rule out the possibility that NEM impacted Ca$^{2+}$ influx, peak Ca$^{2+}$ currents were measured from a holding potential of −60 mV using 200-ms, 10-mV incremental depolarizations to +40 mV after a 30-min treatment of either ethanol (n = 6) or 100 μM NEM (n = 7) (Fig. 4C). The resulting current–voltage relationships were essentially identical between the two conditions (Fig. 4D). In addition, separate experiments showed there was no significant difference between the total peak Ca$^{2+}$ current during a train following ethanol (−658.0 ± 111.1 nA/nF; n = 5) vs NEM (−381.2 ± 85.8 nA/nF; n = 5) (p > 0.05, two-tailed unpaired t-test).

dsRNA inhibition of ELH reduces peptide expression and the change in membrane capacitance

If the train-induced increase in capacitance is due to peptide secretion, then a reduction in bag cell neuron peptide content should decrease the response. To achieve this, cultured bag cell neurons were incubated for 3 d in 300 ng/ml dsRNA targeting the Aplysia ELH precursor mRNA, which codes for both the 36 amino acid ELH peptide itself and the three pentapeptides,
α-, β-, and γ-bag cell peptide (Scheller et al., 1983; Newcomb et al., 1988; Sossin et al., 1990; Fire et al., 1998). These are the reproductively-active components secreted from bag cell neurons during the afterdischarge (Loechner et al., 1990, 1992; Hatcher and Sweedler, 2008). The control consisted of incubating sister bag cell neuron cultures in 300 ng/ml dsRNA of the newt retinoic acid receptor 5 untranslated region. A comparison of the newt sequence with both the Aplysia genome and transcriptome found no significant similarity. Reductions in ELH content were verified by immunocytochemically staining cultured bag cell neurons using rabbit anti-ELH primary antibody followed by goat anti-rabbit Alexa Fluor 488 secondary antibody (see below). Prior immunocytochemistry, immunohistochemistry, immunoblotting, and radioimmunoassay have demonstrated that the primary antibody specifically recognizes ELH in Aplysia nervous tissue, including the bag cell neurons in situ and in vitro, as well as ELH secreted into the hemolymph (Newcomb et al., 1988; Jonas et al., 1997; White and Kaczmarek, 1997; Wayne et al., 1998; Michel and Wayne, 2002).

ELH staining of cultured bag cell neurons required the presence of both antibodies, with essentially no fluorescence signal detected following incubation in the secondary antibody alone (n = 12; data not shown). However, application of the primary and secondary antibody in series produced robust staining of control-treated neurons (n = 24) (Fig. 5A, left). As per previous reports (Chiu and Stumwasser, 1981; White and Kaczmarek, 1997), ELH staining was observed throughout cultured bag cell neurons, with the signal from the soma being more intense vs the neurites and growth cones. Staining was substantially less when bag cell neurons were treated with ELH dsRNA (n = 18) (Fig. 5A, right). Quantification of the somatic signal revealed a significant reduction, by about half, in the fluorescence intensity for ELH dsRNA compared to control (Fig. 5C). Closer examination of 13 growth cones revealed a reduction in overall staining intensity and the number of puncta in ELH dsRNA-treated neurons as opposed to control (Fig. 5B).

The impact of ELH knock-down on secretion was tested with capacitance tracking by voltage-clamping bag cell neurons at −80 mV in Ca²⁺-Cs⁺-TEA ASW and dialyzed for 10 min with either our standard Cs⁺-based intracellular saline or saline supplemented with high-EGTA. In comparison with control intracellular saline (5 mM EGTA, upper trace), the rise in membrane capacitance following delivery of a 5-Hz, 1-min train is markedly reduced when intracellular Ca²⁺ is buffered by high-EGTA (20 mM, lower trace). Scale bars apply to both traces. (B) Summary data of the mean percent change in membrane capacitance show that the increase induced by the train is significantly less when 5 mM ETGA intracellular saline is substituted with 20 mM EGTA intracellular saline (one-tailed unpaired t-test).

Fig. 3. High concentrations of intracellular EGTA reduce the increase in membrane capacitance. (A) Capacitance tracking of two different neurons whole-cell voltage-clamped at −80 mV in Ca²⁺-Cs⁺-TEA ASW and dialyzed for 10 min with either our standard Cs⁺-based intracellular saline or saline supplemented with high-EGTA. In comparison with control intracellular saline (5 mM EGTA, upper trace), the rise in membrane capacitance following delivery of a 5-Hz, 1-min train is markedly reduced when intracellular Ca²⁺ is buffered by high-EGTA (20 mM, lower trace). Scale bars apply to both traces. (B) Summary data of the mean percent change in membrane capacitance show that the increase induced by the train is significantly less when 5 mM ETGA intracellular saline is substituted with 20 mM EGTA intracellular saline (one-tailed unpaired t-test).
cultured bag cell neurons dialyzed with K+-aspartate-based intracellular saline under whole-cell voltage-clamp at -80 mV in nASW. FCCP is a protonophore that collapses the mitochondrial membrane potential and allows Ca$^{2+}$ to leak out of the organelle into the cytosol (Heytler and Prichard, 1962; Simpson and Russell, 1996; Babcock et al., 1997). In response to 20 lM FCCP ($n=11$), a relatively slow-onset elevation in membrane capacitance was observed (Fig. 6A, upper trace). This response was typically smaller than the capacitance change produced by the train (Fig. 6A, upper trace). This response was typically smaller than the capacitance change produced by the train. We also investigated whether releasing endoplasmic reticulum Ca$^{2+}$ with CPA, a Ca$^{2+}$-ATPase blocker (Seidler et al., 1989), was capable of stimulating secretion. Unlike FCCP, 20 lM CPA ($n=6$) did not cause an increase in membrane capacitance (Fig. 6A, lower trace), and the difference between the two reagents reached the level of significance (Fig. 6B).

Vesicles and lysosomes, known as the acidic store, use a V-type H$^+$-ATPase to maintain negative pH, which is then harnessed to sequester Ca$^{2+}$ via H$^+$/Ca$^{2+}$ exchange (Goncalves et al., 1999; Christensen et al., 2002). The protonophore action of FCCP could collapse the acidic store H$^+$ gradient and cause secretion by freeing up non-mitochondrial Ca$^{2+}$ (Han et al., 1999). To rule this out, neurons were exposed to 100 nM of the H$^+$-ATPase inhibitor, bafilomycin A (Bowman et al., 1988), which we have shown liberates non-mitochondrial/non-endoplasmic reticulum Ca$^{2+}$ (Kachoei et al., 2006; Hickey et al., 2010). However, bafilomycin A did not significantly increase membrane capacitance ($n=6$) (Fig. 6B).

The mitochondrial Ca$^{2+}$ released by FCCP could activate one of the several Ca$^{2+}$-dependent and Ca$^{2+}$-permeable non-selective cation channels in bag cell neurons (Lupinsky and Magoski, 2006; Gardam et al., 2008; Geiger et al., 2009; Hickey et al., 2010). This Ca$^{2+}$ entry could induce secretion separate from that evoked by mitochondrial Ca$^{2+}$ itself. To distinguish between Ca$^{2+}$ influx and Ca$^{2+}$ release, cultured bag cell neurons dialyzed with K+-aspartate-based intracellular saline under whole-cell voltage-clamp at -80 mV while tracking capacitance in Ca$^{2+}$-Cs$^+$-TEA ASW with Cs$^+$-based intracellular saline. Prior to the delivery of a 5-Hz, 1-min train, the cells were treated for 30 min with either ethanol (EtOH; the vehicle) or 100 lM NEM. The elevation in membrane capacitance evoked by the train is diminished after treatment with NEM (lower trace) vs treatment with ethanol (upper trace). Scale bars apply to both traces. (B) Summary data show a significant reduction in the mean percent increase in capacitance evoked by the 5 Hz, 1-min train following NEM as opposed to incubation in ethanol (two-tailed unpaired t-test). (C) Ca$^{2+}$ currents from different neurons elicited with 200-ms square pulses from -60 mV in 10-mV increments to $+40\text{ mV}$. The currents observed after 30 min of ethanol (left traces) are very similar to those in 100 lM NEM (right traces) for the same time period. Scale bars apply to both traces. (D) Summary data showing peak Ca$^{2+}$ current normalized to capacitance and plotted against step voltage. There is no difference in the current following pretreatment with NEM (closed circles) vs ethanol (open circles).
cell neurons were voltage-clamped at −80 mV using the K⁺-based intracellular saline and bathed in either nASW (11 mM Ca²⁺) or cfASW (0 Ca²⁺, 0.5 mM EGTA), while administering 20 μM FCCP. There was no significant difference between the rise in membrane capacitance provoked by FCCP in nASW (n = 7) vs cfASW (n = 9) (Fig. 6C, D), implying that mitochondrial Ca²⁺ directly causes secretion.

To confirm the possibility that secretion is elicited by mitochondrial Ca²⁺, experiments involving buffering of intracellular Ca²⁺, similar to those performed for the train-induced capacitance rise, were undertaken. Specifically, cultured bag cell neurons were bathed in nASW and dialysed for 30 min with Cs⁺-based intracellular solution including either 5 mM EGTA (as control) or 20 mM EGTA (to strongly buffer Ca²⁺).

Compared to control (n = 4), introducing a high concentration of EGTA (n = 5) into the neurons lessened the elevation of membrane capacitance due to 20 μM FCCP by about two-thirds (Fig. 6E), which met the level of significance (Fig. 6F).

The pools released by mitochondrial Ca²⁺ and Ca²⁺ influx overlap

As is the case for classical neurotransmission, the secretion of neuropeptides is thought to originate from a readily releasable pool of vesicles (Burke et al., 1997; Barg et al., 2002). To establish if voltage-gated Ca²⁺ influx and mitochondrial Ca²⁺ access the same or different pools of releasable vesicles, cultured bag cell neurons were pretreated for 10–20 min with vehicle or

Fig. 5. dsRNA inhibition of ELH expression attenuates the increase in membrane capacitance. (A) Cultured bag cell neurons immunostained for ELH (1:1000 rabbit anti-ELH IgG followed by 1:200 goat anti-rabbit IgG - Alexa Fluor 488). Left panel, a control neuron (incubated in 300 ng/ml dsRNA corresponding to the 5' untranslated region of the newt retinoic acid receptor) shows intense staining in the soma as well as the two, primary neurites. Right panel, a separate neuron from the same culture group, but exposed to 300 ng/ml ELH dsRNA, has far less signal throughout the soma and the three primary neurites. (B) ELH immunostained growth cones from two, separate bag cell neurons (different from those shown in A). Left panel, under control conditions there is marked staining both in the end of the neurite (lower right portion of photomicrograph) and growth cone central domain, and as well as a high density of punctate staining in the lamellar and filopodial areas. Right panel, in a growth cone from a different neuron, treated with ELH dsRNA, the overall signal and the quantity of puncta are considerably reduced throughout the neurite end, central domain, and lamellipodia. (C) Summary data of somatic ELH immunostaining reveal that exposure to ELH dsRNA results in a significant, near 50% reduction in signal compared to control (one-tailed Mann–Whitney test). (D) Exposure to ELH dsRNA lessens the train-induced capacitance elevation. Left, a cultured bag cell neuron incubated in 300 ng/ml newt retinoic acid receptor dsRNA displays a robust increase in membrane capacitance following a 5-Hz, 1-min train applied under voltage-clamp at −80 mV in Ca²⁺-Cs⁺-TEA ASW with Cs⁺-based intracellular saline. Right, capacitance tracking from another neuron, which has been subjected to 300 ng/ml ELH dsRNA, presents a reduced train-evoked response. The ordinate scale bar applies to both traces. (E) A comparison of the group data indicates that there is a significant difference in the ELH dsRNA- vs the control (newt dsRNA)-treated neurons (one-tailed unpaired t-test).
20 μM FCCP in order to deplete mitochondrial Ca\(^{2+}\) and cause some secretion. Neurons were pretreated, rather than applying both FCCP and the train after establishing recording, because it proved difficult to hold the cells long enough to carry out both procedures, particularly after eliminating mitochondrial function. Subsequently, the 5-Hz, 1-min train was delivered under voltage-clamp at −80 mV in Ca\(^{2+}\)-Cs\(^{+}\)-TEA ASW with Cs\(^{+}\)-based intracellular saline while tracking membrane capacitance. The capacitance increase following the train was around two-thirds smaller in neurons which saw FCCP (\(n = 6\)) relative to control (\(n = 7\)) (Fig. 7A).

The group data demonstrated that this difference was significant (Fig. 7B).

A non-hydrolyzable guanosine nucleotide impacts the FCCP-induced, but not train-induced, change in capacitance

If the increase in membrane capacitance represents exocytosis, the complement would be that the recovery of capacitance toward baseline represents endocytosis.
Cultured bag cell neurons with either intracellular

Similarly, Loechner supplemented with 0.1 mM GTP or intracellular saline, a 5-Hz, 1-min train compared to control (upper trace). Scale bars apply to both traces. (B) Summary data comparing the mean percent change in train-induced elevation in membrane capacitance in control and FCCP-treated neurons indicate a significant difference (two-tailed unpaired t-test).

Prior depletion of mitochondrial Ca$^{2+}$ stores with a 10-min pretreatment in 20 μM FCCP (lower trace) attenuates the capacitance increase following a 5-Hz, 1-min train compared to control (upper trace). Scale bars apply to both traces.

(A) Records of capacitance tracking from two individual neurons under whole-cell voltage-clamp at −80 mV in Ca$^{2+}$-Cs$^{-}$-TEA ASW with Cs$^{-}$-based intracellular saline. Prior depletion of mitochondrial Ca$^{2+}$ stores with a 10-min pretreatment in 20 μM FCCP (lower trace) attenuates the capacitance increase following a 5-Hz, 1-min train compared to control (upper trace). Scale bars apply to both traces. (B) Summary data comparing the mean percent change in train-induced elevation in membrane capacitance in control and FCCP-treated neurons indicate a significant difference (two-tailed unpaired t-test).

Classical membrane retrieval occurs via clathrin-coated pits that are pinched off by the GTPase, dynamin (Van Der Blik and Meyerowitz, 1991; Praefke and McMahon, 2004). GTP-γ-S is a non-hydrolyzable GTP analog that locks up dynamin and will prolong the response by impeding endocytosis (Takei et al., 1995; Yamashita et al., 2005). We tested the role of this pathway in endocytosis following the capacitance increase brought about by either voltage-gated Ca$^{2+}$ influx or mitochondrial Ca$^{2+}$.$

Neurons from animal cohorts engaged in egg-laying behavior display a larger change in capacitance

The role of bag cell neuron secretion is to bring about ovulation (Conn and Kaczmarek, 1989). To acquire a better understanding of how the capacitance increase of single neurons relates to behavior, we compared the magnitude of the train-induced response in neurons from a cohort of animals that showed evidence of egg-laying vs a cohort that was not reproductively active. Aplysia are seasonal breeders and most often found to be mating and/or laying eggs from late-June through September (Audesirk, 1979). The egg-laying cohort was supplied to our laboratory in late-July, the peak of the Aplysia breeding season (Kupfermann, 1970; Audesirk, 1979), and daily observations routinely found egg masses in their tank, whereas the non-egg-laying cohort was harvested in early-June and presented no evidence of eggs. Bag cell neurons were regularly cultured from both cohorts and the capacitance tracked in randomly selected neurons throughout the time the animals were housed in our facility. Under voltage-clamp in Ca$^{2+}$-Cs$^{-}$-TEA ASW with Cs$^{-}$-based intracellular saline, a 5-Hz, 1-min train caused a larger capacitance change in egg-laying cohort neurons ($n = 10$) as opposed to non-egg-laying cohort neurons ($n = 9$) (Fig. 9A). Specifically, the average response was 5-fold greater and significantly different (Fig. 9B). Note, the majority of neurons considered in Figs. 1–8 were cultured from animals harvested during the breeding season, i.e., late-June through to September (Audesirk, 1979). Thus, egg-laying was anecdotally evident in these other animals, although the presence of egg masses was not tracked daily.

DISCUSSION

Bag cell neurons undergo an afterdischarge characterized by intracellular Ca$^{2+}$ elevation and the secretion of neuropeptides to induce reproduction (Stuart et al., 1980; Kaczmarek et al., 1982; Woolum and Strumwasser, 1988; Fisher et al., 1994). Arch (1972) employed 3H protein-labeling to show that an afterdischarge or high-K$^+$ releases peptide, but only in the presence of extracellular Ca$^{2+}$.$

Similarly, Loechner et al. (1990) used high-pressure liquid chromatography to demonstrate that blocking voltage-gated Ca$^{2+}$ channels during an afterdischarge suppresses peptide secretion. Finally, Hatcher et al. (2005) and Jo et al. (2007) detected the release of ELH and other peptides by mass spectrometry after driving action potentials in cultured bag cell neurons with either intracellular stimulation or high-K$^+$. In the present study, we monitored peptide secretion from individual bag cell neurons by tracking electrical capacitance – a well-established method to quantify vesicle fusion as a...
change in plasma membrane area (Neher and Marty, 1982; Lim et al., 1990; Klyachko and Jackson, 2002; Yamashita et al., 2005).

Consistent with voltage-gated Ca\(^{2+}\) entry being the primary trigger for exocytosis (Katz and Miledi, 1967; Llina\'s et al., 1981), substituting Ba\(^{2+}\) for external Ca\(^{2+}\) or adding Ni\(^{2+}\) abolishes the train-induced capacitance increase in bag cell neurons. Ca\(^{2+}\) removal or Ca\(^{2+}\) channel block also eliminates peptide release from AIT20 and B-cells, as well as pituitary and hypothalamic neuroendocrine cells (Hsu and Jackson, 1996; Branchaw et al., 1998; Whim and Moss, 2001; Sedej et al., 2004; Soldo et al., 2004). That Ba\(^{2+}\) is ineffective at initiating bag cell neuron exocytosis concurs with Ba\(^{2+}\) substituting poorly for Ca\(^{2+}\) in transmitter release (Miledi, 1966; Nowycky et al., 1998; Shin et al., 2003). Yet, in the intact bag cell neuron cluster, Ba\(^{2+}\) can evoke ELH secretion, although this is likely due to Ba\(^{2+}\)-induced Ca\(^{2+}\)-release from intracellular stores, particularly in the processes (Fisher et al., 1994; Wayne et al., 1998). This discrepancy may be explained by our use of EGTA in the recording pipette, which would have prevented somatic Ca\(^{2+}\)- or Ba\(^{2+}\)-induced Ca\(^{2+}\)-release (Groten et al., 2013). Finally, we find that dsRNA knock-down of ELH expression diminishes the capacitance response. To the best of our knowledge, there are no examples of reduced peptide expression impacting neuronal secretion; however, dsRNA-inhibition of endothelin, Drosophila insulin-like peptide, or tumor necrosis factor alpha, decreases constitutive or inflammation-evoked secretion from non-neuronal cells (Rayhman et al., 2008; Colombani et al., 2012; Pichu et al., 2012). Attenuation of the capacitance change by reduced ELH expression may result from fewer vesicles being available for release by Ca\(^{2+}\) influx.

Although most of the neurons used throughout the present study had neurites, sprouting was not absolutely necessary for the train-induced capacitance increase. In vivo, bag cell neuron somata contain both large and small ELH-positive dense core vesicles, whereas the processes house only small peptidergic vesicles (Kreiner et al., 1986); in addition, α- and γ-bag cell peptide-containing vesicles are more prevalent in the soma (Fisher et al., 1988). Because our recordings are solely from the soma, the capacitance measurements are likely dominated by the fusion of soma-specific...
vesicles. Thus, our secretory responses may differ from the intact cluster, which clearly involves release from processes (Lee and Wayne, 2004). Nevertheless, secretion of bona fide ELH has been found using mass spectrometry of beads placed either directly on cultured bag cell neuron neurites or somata as well as directly on the intact cluster (Hatcher et al., 2005; Hatcher and Sweedler, 2008). Also, peptide release from sites other than the terminal is not unusual for neuroendocrine cells; for example, Pow and Morris (1989) first demonstrated that hypothalamic neurons release oxytocin and vasopressin from both the soma and dendrites.

Following vesicle fusion, the SNARE (soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein receptor) complex is unravelled by the ATPase function of NSF (May et al., 2001; Rettig and Neher, 2002; Smith et al., 2008). NEM alkylates NSF and hinders peptide secretion from B-, AtT20, Chinese hamster ovary, and PC12 cells (Block et al., 1988; Chavez et al., 1996; Eliasson et al., 1997; Han et al., 1999). Exposure of bag cell neurons to NEM reduces the capacitance increase evoked by the train. This could be attributed to NSF alkylation, although NEM is also capable of alkylyating Ca2+ channels (Fryer, 1992). However, we do not observe a significant effect of NEM on either the bag cell neuron Ca2+ current (this study) or a Ca2+-influx-gated cation current (Hickey et al., 2010).

Classical neurotransmitter release occurs in a few hundred microseconds and requires considerable Ca2+ near the vesicle (Llinás et al., 1981; Adler et al., 1991). Generally, peptide release takes several milliseconds to seconds, necessitates sustained Ca2+, and is reduced by the slow Ca2+ buffer, EGTA (Smith et al., 1984; Neher, 1998). This is observed for the secretion of atrial natriuretic factor, growth hormone, insulin, oxytocin/vasopressin, and proopiomelanocortin (Lim et al., 1990; Thomas et al., 1993; Burke et al., 1997; Branchaw et al., 1998; Kilic et al., 2001; Barg et al., 2002; Sedej et al., 2004). Bag cell neuron exocytosis is reduced by EGTA and is steeply dependent on the pulse duration of the train. The capacitance change is first observed at a 37-ms pulse duration and plateaus by 50 ms. This despite Ca2+ current recordings showing trains with 10- or 25-ms pulse durations still produce Ca2+ influx. Furthermore, the duration for half-maximal Ca2+ influx is essentially 37 ms with a plateau at 75 ms. Thus, a Ca2+ threshold must be reached to engage a releasable pool of vesicles, suggesting low-affinity binding of Ca2+ to several targets, multiple Ca2+-dependent reactions, and/or a lack of molecular coupling between Ca2+ channels and vesicles – the latter being supported by EGTA sensitivity (Thomas et al., 1993; Neher, 1998). Both oxytocin/vasopressin and proopiomelanocortin secretion share a similarly abrupt dependence on stimulus duration, with proopiomelanocortin release also presenting a high Ca2+ threshold which subsequently plateaus (Thomas et al., 1993; Soldo et al., 2004). The plateauing of bag cell neuron secretion may represent both a levelling off of Ca2+ influx with increasing pulse duration as well as competition between exocytosis and endocytosis.

Peptide secretion typically depresses to repeated stimulation (Thomas et al., 1993; Hsu and Jackson, 1996; Whim et al., 1997; Kilic et al., 2001; Soldo et al., 2004). Bag cell neuron exocytosis fatigues markedly, with the capacitance increase dropping by half following a second stimulus. This is likely not due to whole-cell

Fig. 9. Egg-laying animals yield neurons which show a greater increase in membrane capacitance. (A) Capacitance tracking from two different neurons whole-cell voltage-clamped to -80 mV in Ca2+-Cs+-TEA ASW and dialyzed with Cs+-based intracellular saline. Upper trace, Stimulation with a 5-Hz, 1-min train of a neuron cultured from an animal in a cohort observed to be laying eggs results in a clear elevation of membrane capacitance. Lower trace, the same stimulus given to a neuron cultured from an animal whose cohort was not laying eggs presents a much smaller change in capacitance. Scale bars apply to both traces. (B) Summary data show a significantly greater average percent increase in capacitance evoked by the 5-Hz, 1-min train in neurons from egg-laying animals as compared to those from non-egg-laying animals (two-tailed Mann–Whitney test).
run-down (Ammalá et al., 1993), given that we observed robust responses to a single train following dialysis for a similar time period as the double train experiments. Interestingly, Arch (1972) reported that following high-K⁺-induced peptide release from intact bag cell neurons, delivering high-K⁺ again elicited only one-fifth the amount of secretion, and a third stimulus produced no effect. Burke et al. (1997) suggest that repletion of atrial natriuretic factor-containing vesicles is restricted to a small proportion of slow-moving granules. ELH-containing vesicles are approximately 150 nm in diameter (Fisher et al., 1988), and depression could reflect the limited mobility of large vesicles in the reserve pool to replenish the releasable pool.

Bag cell neurons appear unique, in that liberating mitochondrial Ca²⁺ with FCCP directly provokes peptide exocytosis. The only exception we have found is FCCP-induced catecholamine secretion from chromaffin cells (Miranda-Ferreira et al., 2009). In hippocampal, superior olivary complex, and crayfish neurons, liberating mitochondrial Ca²⁺ or preventing uptake does not cause transmitter release, but can disrupt short-term plasticity (Tang and Zucker, 1997; Billups and Forsythe, 2002; Lee et al., 2007). In part, the pool of bag cell neuron releasable vesicles appears to be shared among voltage-gated Ca²⁺ and mitochondrial Ca²⁺. Perhaps, in the absence of molecular coupling between Ca²⁺ channels and vesicles, any large Ca²⁺ elevation is sufficient to bring about exocytosis. Bag cell neuron Ca²⁺-induced Ca²⁺-release requires uptake and subsequent release of Ca²⁺ from the mitochondria (Geiger and Magoski, 2008; Groten et al., 2013); moreover, activity- or Ca²⁺-induced Ca²⁺-release following an afterdischarge prolongs secretion from the intact cluster (Wayne et al., 1998). The latter may involve Ca²⁺ from intracellular stores in the processes (Michel and Wayne, 2002), a region known to contain abundant mitochondria (White and Kaczmarek, 1997). Thus, the physiological liberation of mitochondrial Ca²⁺ could promote ELH secretion in vivo.

Endoplasmic reticulum Ca²⁺ does not trigger bag cell neuron secretion, since CPA has no effect on capacitance. This is in keeping with Jonas et al. (1997), who did not observe release from intact bag cell neurons following exposure to thapsigargin, a CPA analog (Thastrup et al., 1990). Likewise, Gilbert et al. (2008) reported that insulin secretion is not evoked by endoplasmic reticulum Ca²⁺; however, other work shows Ca²⁺ from this store potentiates or causes the secretion of atrial natriuretic factor, luteinizing hormone, and oxytocin (Tse et al., 1997; Ludwig et al., 2002; Shakiryanova et al., 2007). In the bag cell neurons, the secretory capacity of the endoplasmic reticulum may be influenced by the fact that these organelles appear to have less stored Ca²⁺ than the mitochondria (Hickey et al., 2010). Furthermore, we recently demonstrated that mitochondria, but not the endoplasmic reticulum, sequester voltage-gated Ca²⁺ influx, which may indicate the former are closer to the membrane and the readily releasable pool (Groten et al., 2013). Endocytotic retrieval following exocytosis is reflected by a decrease in capacitance (Neher and Marty, 1982). GTP-γ-S fails to alter bag cell neuron exocytosis or subsequent endocytosis when stimulated by Ca²⁺ entry. Intense Ca²⁺ influx at peptidergic and classical transmitter release sites can lead to GTP-γ-S-insensitive endocytosis (Engisch and Nowycky, 1998; Zhang et al., 2004; Clayton et al., 2008; Xu et al., 2008). Conversely, the FCCP-induced secretion is both enhanced, and the recovery slowed, by GTP-γ-S. While this may suggest differences in membrane retrieval following rapid vs slow exocytosis, additional mechanisms may be at work, given that GTP-γ-S can turn on Ras-like GTPases and alter the localization of mitochondria or directly influence exocytosis (Reis et al., 2009; Ore and Gasman, 2011).

The capacitance changes in cultured bag cell neurons are consistent with exocytosis produced by Ca²⁺ entry or Ca²⁺ released from mitochondria. The secretory response has a high Ca²⁺ threshold, which could reflect a Ca²⁺-dependent preparatory step prior to exocytosis (Nowycky et al., 1998). Such an arrangement is not unexpected for the secretion of a hormone that controls an energetically expensive and vulnerable activity like egg-laying. This is reinforced by our finding that egg-laying animals yield neurons which secrete substantially more to the train. The breeding season is associated with both greater ELH synthesis in the bag cell neurons and a more reliable induction of egg-laying following ELH injection (Kupfermann, 1970; Berry, 1982). Thus, neurons from non-breeding animals could have fewer peptidergic vesicles available for release. Alternatively, the extent of Ca²⁺ influx could differ between the two neuronal groups. In a subset of cells from Fig. 9, preliminary intracellular Ca²⁺ measurements using whole-cell fura PE3 imaging (see Groten et al., 2013 for methods), revealed that the train-elicited change in the fura ratio of neurons cultured from non-egg-laying animals (0.28 ± 0.08; n = 9) was significantly smaller compared to those from egg-laying animals (0.71 ± 0.06; n = 8) (p < 0.001; two-tailed unpaired t-test). This has parallels to Nick et al. (1996), who showed juvenile Aplysia, which typically do not lay eggs, also have small Ca²⁺ currents. Still, we cannot rule out the possibility that the time of year or exact location of animal collection could influence secretion. In general, the neuroendocrine control of fundamental behaviors, like egg-laying, may require multiple Ca²⁺ sources and a high threshold to ensure appropriate execution.

Acknowledgements—The authors thank S.L. Smith and H.M. Fuller-Hodgson for technical assistance, N.L. Wayne for the generous gift of ELH antibody, N.M. Magoski for the evaluation of previous drafts of the manuscript, and the anonymous Reviewers for providing constructive comments to improve the manuscript. C.M.H. and C.J.G. held Ontario Graduate Scholarships. C.J.G. holds a Natural Sciences and Engineering Research Council Post-graduate Scholarship. N.S.M. holds a Canadian Institutes...
of Health Research New Investigator Award. Supported by a CIHR operating grant to NSM.

REFERENCES

REFERENCES

