Graham P. Cote, Ph.D

Graham P. Cote

Faculty Bio

We are studying the catalytic mechanism and functional properties of a novel family of protein kinases termed the alpha-kinases. Members of the alpha-kinase family include Dictyostelium myosin II heavy chain kinase (MHCK), which regulates myosin II filament assembly, and the mammalian elongation factor 2 kinase (eEF2K) which regulates protein synthesis. These kinases have catalytic domains that differ considerably from conventional eukaryotic protein kinases and form an aspartatylphosphate intermediate during catalysis. Our second project focuses on the single-headed class I myosins that drive processes at the plasma membrane such as phagocytosis and endocytosis. We have shown that Myo1e, a mammalian class I myosin, is required for the formation of invadodopodia. We are also investigating the regulation of Dictyostelium class I myosins by members of the p21-activated kinase (PAK) family, which phosphorylate a site in the motor domain, and by the light chains. We have found that Dictyostelium class I myosins contain novel calmodulin-like light chains, termed MlcB MlcC and MlcD, and are interested in understanding how they regulate myosin I motor activity.

Last Modified: 2012-10-19