BCHM 421/422 -- 2019/2020

Project outline: Oxygen is among the most common elements found in organic and biological molecules, but remains the only one that has not yet been fully utilized in nuclear magnetic resonance (NMR) studies of biological macromolecules such as proteins and nucleic acids. This is because the only NMR-active oxygen isotope, ¹⁷O, has an exceedingly low natural abundance, 0.037%. Therefore, ¹⁷O isotopic labeling is generally a prerequisite of ¹⁷O NMR studies. While isotope labeling of proteins with ¹³C and ¹⁵N is a common technique for determination of protein structures by NMR, incorporation of ¹⁷O into proteins is a new direction of research. In the past decade, significant progress has made in ¹⁷O NMR spectroscopy of small organic compounds. As a result, ¹⁷O NMR of proteins has become an emerging field [1]. In this project, we will prepare ¹⁷O-labeled amino acids, incorporate them into proteins using recombinant techniques, and explore the boundary of ¹⁷O NMR for proteins.

Supervisor: Gang Wu (Chemistry); Co-supervisor: Steve Smith (DBMS)

Project Title: Synthesis of ¹⁷O-labeled amino acids and their incorporation into proteins

Project Goals: Prepare ¹⁷O-labeled amino acids; incorporate them into proteins by using auxotrophic *E. Coli* strains DL39 and CT19.

Experimental Approaches:

- Organic synthesis (basic wet lab skills, compound characterization by spectroscopic analysis)
- Protein biochemistry (recombinant protein expression, purification, characterization, and crystallization)
- 170 NMR for small molecules and proteins

References:

[1] J. Zhu and G. Wu, J. Am. Chem. Soc. **2011**, 133, 920.