BCHM421/422 - Jia Lab Project #1

Project Outline: *Pseudomonas aeruginosa* is an opportunistic Gram-negative bacterium known for its severe pathogenicity, particularly in immune-compromised patients and those with cystic fibrosis. The increasing incidence of multidrug-resistant *P. aeruginosa* infections has led the World Health Organization to deem this bacterium a Priority 1 pathogen that is in urgent need of new antibiotics. It has been documented that the polyphosphate kinase (PPK) family of enzymes is essential for *P. aeruginosa* virulence in a mouse model of infection, and *ppk* gene knockout strains feature multiple functional defects. PPKs have thus been lauded as attractive therapeutic targets. In collaboration with the pharmaceutical industry, the Jia lab recently discovered a family of small molecules that inhibit PPK *in vitro* with low-micromolar affinity and attenuate *P. aeruginosa* virulence phenotypes *in vivo*. To improve our PPK inhibitors, this project will use a combination of X-ray crystallography, inhibition kinetic studies, and analogue compound synthesis. These techniques will inform the development of a structure-activity relationship (SAR) to guide the rational modification of our lead compounds to optimize potency and specificity for PPK enzymes. This work will pave the way towards a much-needed novel class of antimicrobial drugs to treat resistant *P. aeruginosa* infections.

Supervisor: Zongchao Jia

Project Title: Structure-guided inhibition of polyphosphate kinases in *P. aeruginosa* as a novel antivirulence approach

Project Goals: This project aims to design new antimicrobial drugs via structure-guided chemical synthesis. These drug candidates will then be validated for activity against *P*. *aeruginosa*.

Experimental Approaches: X-ray crystallography, *in vitro* inhibition and kinetic studies, *P. aeruginosa* virulence phenotype assays (e.g. biofilm, pyoverdine, motility), *Caenorhabditis elegans* infection modelling.

References:

1. WHO publishes list of bacteria for which new antibiotics are urgently needed. [online] http://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed

2. Rashid, M. H., Rumbaugh, K., Passador, L., Davies, D. G., Hamood, A. N., Iglewski, B. H., and Kornberg, A. (2000) Polyphosphate kinase is essential for biofilm development, quorum sensing, and virulence of Pseudomonas aeruginosa. *PNAS*. 97, 9636–9641

3. Dahl, J.-U., Gray, M. J., Bazopoulou, D., Beaufay, F., Lempart, J., Koenigsknecht, M. J., Wang, Y., Baker, J. R., Hasler, W. L., Young, V. B., Sun, D., and Jakob, U. (2017) The anti-inflammatory drug mesalamine targets bacterial polyphosphate accumulation. *Nat Microbiol.* 2, 16267

4. Racki, L. R., Tocheva, E. I., Dieterle, M. G., Sullivan, M. C., Jensen, G. J., and Newman, D. K. (2017) Polyphosphate granule biogenesis is temporally and functionally tied to cell cycle exit during starvation in Pseudomonas aeruginosa. *Proc. Natl. Acad. Sci. U.S.A.* 114, E2440–E2449